Vea También
La naturaleza a menudo nos recuerda nuestra fragilidad y pequeñez en la Tierra, más incluso si nos detenemos a pensar nuestro insignificante papel dentro del universo. A pesar de nuestra visión antropocéntrica, estamos muy lejos de controlar todo nuestro entorno. Un ejemplo son las grandes erupciones solares, capaces de cambiar nuestra vida en un abrir y cerrar de ojos.
Las tormentas geomagnéticas son causadas por la interacción entre una fulguración del Sol o eyección de masa coronal y el campo magnético de la Tierra. Este tipo de tormentas generan una perturbación del campo magnético terrestre que produce impresionantes auroras boreales, pero que también puede ocasionar impactos globales y devastadores para nuestra especie.
En una sociedad tan dependiente de la tecnología como la actual, una tormenta electromagnética de gran magnitud nos podría hacer retroceder durante meses o años a una vida pretecnológica, ya que pueden afectar a las comunicaciones, los sistemas de navegación y las redes eléctricas, entre otras infraestructuras.
Por ejemplo, el llamado evento Carrington, la mayor tormenta geomagnética en los tiempos recientes, acabó en 1859 con gran parte de los sistemas de telégrafos del hemisferio norte. Los documentos de la época relatan avistamientos de auroras boreales en lugares tan meridionales como Madrid o Roma.
Por suerte, las aún limitadas comunicaciones hicieron que aquel fenómeno no conllevara impactos muy importantes. Pero ¿habían ocurrido antes estos eventos?, ¿cómo podemos saber cuándo y dónde han sucedido? ¡Vamos a averiguarlo!
Un registro cósmico en la Tierra
A pesar de que es ahora cuando más podríamos sufrir sus consecuencias, las tormentas geomagnéticas han sucedido a lo largo de la historia. ¿Cómo lo sabemos? Contamos con un registro histórico que se lo debemos a la fotosíntesis.
En ese proceso, las plantas toman carbono atmosférico en forma de CO₂, que combinan con el agua para generar materia orgánica gracias a la energía que aporta la luz solar. Parte de esta materia orgánica se utiliza para formar las células que dan lugar a la estructura de la planta.
Así, los árboles, que pueden alcanzar cientos o miles de años, registran todo lo que ocurre a su alrededor y guardan esa información en la madera. Son capaces incluso de reflejar aumentos de un isótopo radiactivo extremadamente raro, como es el C¹⁴. Este isótopo se forma por el bombardeo de los rayos cósmicos al entrar en contacto con átomos de N¹⁴ en la parte superior de la atmósfera terrestre.
Analizando el contenido del C¹⁴ en las células que forman los anillos de crecimiento de árboles extremadamente viejos, podríamos ser capaces de rastrear cuándo han ocurrido estos eventos. Habitualmente, se han asociado inusuales aumentos en el contenido de C¹⁴ con enormes emisiones de radiación cósmica procedente del sol.
De esta forma, los científicos han conseguido fechar eventos de aumento de rayos cósmicos, también llamados eventos Miyake. Entre ellos destaca uno, acaecido entre 774 y 775, diez veces más importante que el ocurrido en 1859 y descubierto en 2012 por un grupo de investigadores japoneses liderados por Fusa Miyake. No obstante, los autores no asignaron el origen de estos rayos cósmicos a una erupción solar ni a ninguna otra posible fuente.
Relación entre los eventos Miyake y el ciclo solar
Un reciente estudio, liderado por el investigador de la Universidad de Queensland Benjamin Pope, cuestiona la asociación de estos picos de C¹⁴ con erupciones solares por su inconsistencia con los ciclos de actividad de nuestra estrella. Este grupo de científicos ha recopilado todos los datos disponibles sobre los eventos Miyake y han generado un nuevo software para su análisis.
Los eventos reconstruidos por el equipo de Fusa Miyake no concuerdan con el ciclo solar de 11 años, periodo de tiempo en el que el Sol experimenta máximos de actividad magnética. Las tormentas geomagnéticas habitualmente ocurren durante el máximo solar, mientras que los eventos Miyake no muestran una clara asociación. La segunda inconsistencia sería la duración de los fenómenos, mientras el evento de 774-775 parece persistir varios años, el evento Carrington de 1859 duró apenas uno o dos días.
En todo caso, queda abierto el reto de predecir cuándo sucederá el próximo evento Miyake. Y no menos importante, todavía hay un largo recorrido para conocer cuándo y con qué intensidad ocurrieron los eventos pasados. Solamente investigando sus patrones podremos hallar mecanismos con los que reducir un poco más nuestra fragilidad dentro de la naturaleza.
Gabriel Sangüesa Barreda, Investigador en ecología forestal, Universidad de Valladolid y Miguel García Hidalgo, Investigador Postdoctoral, Universidad de Valladolid
Este artículo fue publicado originalmente en The Conversation. Lea el original.