Vea También
Los ganadores del premio Nobel de Química 2023 se anuncian en la Real Academia Sueca de las Ciencias en Estocolmo el miércoles. Fotografía: Tt News Agency/Reuters |
Un punto cuántico es un cristal nanométrico que suele estar formado por unos pocos miles de átomos. En términos de dimensiones, tiene la misma relación con un balón de fútbol que este con el tamaño de la Tierra. Son nanopartículas tan diminutas que su tamaño determina sus propiedades.
El tamaño de un punto cuántico es a un balón de fútbol, lo que a este a la Tierra. / ©Johan Jarnestad/The Royal Swedish Academy of Sciences |
Todo el que estudia química aprende que las propiedades de un elemento se rigen por el número de electrones que tiene. Sin embargo, cuando la materia se reduce a dimensiones nanométricas surgen fenómenos cuánticos, que se rigen por el tamaño de la materia.
Los tres premios Nobel de Química 2023 han logrado producir partículas tan pequeñas que sus propiedades están determinadas por estos fenómenos cuánticos.
Los puntos cuánticos tienen muchas propiedades inusuales, con diferentes colores en función de su tamaño, y se aplican en el campo de la nanotecnología
"Los puntos cuánticos tienen muchas propiedades fascinantes e inusuales. Y lo que es más importante, tienen diferentes colores en función de su tamaño", afirma Johan Åqvist, presidente del Comité Nobel de Química.
Los físicos sabían desde hacía tiempo que, en teoría, podían surgir efectos cuánticos dependientes del tamaño en las nanopartículas, pero en aquel momento era casi imposible esculpir en nanodimensiones. Por eso, pocos creían que estos conocimientos fueran a tener un uso práctico.
Avance hacia las aplicaciones
Sin embargo, a principios de la década de 1980, Alexei Ekimov (antigua URSS, 1945), consiguió crear efectos cuánticos dependientes del tamaño en cristal coloreado. El color procedía de nanopartículas de cloruro de cobre y Ekimov demostró que el tamaño de las partículas afectaba al color del cristal a través de efectos cuánticos.
Estos efectos surgen cuando las partículas se ‘encogen’: su tamaño determina el espacio disponible para los electrones, afectando a sus propiedades ópticas. Los puntos cuánticos absorben la luz y luego la emiten a otra longitud de onda, y su color depende del tamaño de la partícula.
Los efectos cuánticos surgen cuando las partículas se ‘encogen’, y el color depende de su tamaño. Los puntos cuánticos absorben la luz y luego la emiten a otra longitud de onda. / ©Johan Jarnestad/The Royal Swedish Academy of Sciences |
El Nobel premia “el descubrimiento y la síntesis de puntos cuánticos" llevados a cabo por Moungi G. Bawendi, Louis E. Brus y Alexei I. Ekimov
Unos años más tarde, Louis Brus (Cleveland, EE UU, 1943), fue el primer científico del mundo en demostrar efectos cuánticos dependientes del tamaño en partículas que flotan libremente en un fluido.
Después, en 1993, Moungi Bawendi (París, Francia, 1961), revolucionó la producción química de puntos cuánticos, m obteniendo partículas casi perfectas. Esta alta calidad era necesaria para poder utilizarlas en aplicaciones.
Esquema del método de Moungi Bawendi para producir puntos cuánticos: inyección de sustancias para generar cristales de seleniuro de cadmio (1), que dejaban de formarse cuando el disolvente se enfriaba (2). Al volverlo a calentar, crecían de nuevo los cristales, más grandes si se dejaban más tiempo (3). / ©Johan Jarnestad/The Royal Swedish Academy of Sciences |
En la actualidad, los puntos cuánticos son de gran importancia en nanotecnología. Estos pequeñísimos componentes iluminan monitores de ordenador y pantallas de televisión basados en la tecnología QLED (Quantum Dot Light Emitting Diode).
Los puntos cuánticos iluminan monitores de ordenador y pantallas de televisión basados en tecnología QLED
También añaden matices a la luz de algunas lámparas LED, y los bioquímicos y médicos los utilizan para cartografiar tejidos biológicos. Además, ayudan a los cirujanos en sus intervenciones, como la extirpación de tejidos tumorales.
Los puntos cuánticos están aportando grandes beneficios a la humanidad, destacan los responsables del Nobel. La comunidad científica también cree que en el futuro podrían contribuir a la electrónica flexible, los sensores diminutos, las células solares más finas y la comunicación cuántica encriptada. La exploración del potencial de estas diminutas partículas no ha hecho más que empezar.
Más temas acerca de:
Química